Write your name here Surname	Other n	ames
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	Centre Number	Candidate Number
Physics Paper 1		
		Higher Tier
Sample Assessment Material for first to Time: 1 hour 45 minutes	eaching September 2016	Paper Reference 1PH0/1H
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must **show all your working out** with **your answer clearly identified** at the **end of your solution**.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S50050A
©2016 Pearson Education Ltd.

PEARSON

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 There are many different types of waves.
 - (a) Waves on the surface of water are transverse waves.

Sound waves are longitudinal waves.

Describe the difference between transverse waves and longitudinal waves.

(2)

(b) Figure 1 shows a ripple tank.

This is used to study the behaviour of water waves.

Figure 1

Water waves are produced in the tank.	
The shadow of the waves is projected onto the screen below the tank.	
The waves appear to move in the direction of the arrow.	
(i) Describe how to determine the frequency of the waves.	(2)
	,
(ii) The screen is 80 cm long.	
What is the approximate wavelength of the waves as seen on the screen?	(1)
	(1)
■ B 8cm	
□ 80 cm	
(iii) A student uses the image to estimate the speed of the water wave as 75 cm/s.	
Which of these is a reason why the estimate is not correct?	
A the student used a ruler without mm markings	(1)
■ B the light was not bright enough	
C the student's measurement was inaccurate	
une wave seen on the sereem s mag.m.ea	
(Total for Question 1 = 6 ma	rks)

2 (a	 Scientists no longer accept the geocentric model of the universe but it was the accepted theory for hundreds of years. 	
	Explain why the evidence available at the time supported the geocentric model.	(3)
(1	b) The Big Bang theory and the Steady State theory are two theories about the origin of the universe.	
	The discovery of CMB led scientists to accept only one of the theories.	
	Explain why red shift supports both theories but CMB supports only one of them.	
		(3)
		(3)
		(3)
		(3)

(1)

(c) (i) A star with a mass very much larger than the Sun
 A has a longer main sequence than the Sun and ends as a white dwarf
 B has a longer main sequence than the Sun and ends as a black hole
 C has a shorter main sequence than the Sun and ends as a white dwarf
 D has a shorter main sequence than the Sun and ends as a black hole

(ii) Which row has two correct statements about black holes?

	the gravitational field of a black hole	a black hole is formed when
⊠ A	allows only electromagnetic radiation to escape	a nebula collapses
В В	allows nothing to escape	a very large star collapses
⊠ C	allows nothing to escape	a nebula collapses
□ D	allows only electromagnetic radiation to escape	a very large star collapses

(Total for Question 2 = 8 marks)

3 (a) Figure 2 shows some lines in the absorption spectra from four different galaxies (A, B, C, and D) and from a laboratory source.

All the spectra are aligned and to the same scale.

Figure 2

(i) Explain, using Figure 2, which galaxy is furthest away from us.

(3)

(ii)	In Figure 2, the reference wavelength, λ_0 , is shown at 390 nm.	
	Estimate the change in the reference wavelength, $\Delta\lambda$, for the light from galaxy	D.
		(1

$\Delta \lambda =$		nm
--------------------	--	----

(iii) Calculate the speed, v, of galaxy D.

Use the equation

$$v = c \frac{\Delta \lambda}{\lambda_0}$$

[c = speed of light = 3×10^8 m/s]

(2)

(2)

(b) Figure 3 shows a photograph of galaxy D.

This photograph was taken by a student at his home.

(Source: Paul Curtis)

Figure 3

State **two** ways that the student can improve the observational techniques so that the quality of the image is improved.

1	
2	
	(Total for Question 3 = 8 marks)

4 Figure 4 shows two students investigating their reaction times.

Student B supports his left hand on a desk.

Student A holds a ruler so that the bottom end of the ruler is between the finger and thumb of student B.

When student A releases the ruler, student B catches the ruler as quickly as he can.

The investigation is repeated with the right hand of student B.

Figure 4

(a) The students took five results for the left hand and five results for the right hand. Figure 5 shows their results.

which	distance dropped (cm)					
hand	trial 1	trial 2	trial 3	trial 4	trial 5	average
left	10.1	25.5	18.4	14.6	11.7	14
right	17.5	16.1	19.4	18.6	20.2	

Figure 5

(i) Calculate the average distance dropped for the right hand.

Give your answer correct to 2 significant figures.

(2)

(ii) Calculate the average time for the left hand.

Use the equation

$$time^2 = \frac{distance}{500}$$

(2)

(b) Explain whether any of the readings are anomalous.	(2)
(c) Give two ways that the students can improve the quality of their data other than ignoring anomalous results.	(2)
(d) Describe how the students could develop their investigation to investigate how	
reaction time changes with another variable.	(2)
(Total for Question 4 = 10 ma	arks)

5 (a) A car accelerates at a constant rate of 1.83 m/s² along a flat straight road.

The force acting on the car is 1.870 kN.

Calculate the mass of the car.

Give your answer to three significant figures.

(3)

mass =kg

(b) The car accelerates from rest for 16 s.

Calculate the speed of the car after 16 s.

(3)

speed = m/s

(c) The car starts on another journey.

Figure 6 shows the graph of the car's movement.

Figure 6

Show that the distance travelled when the car is moving at a constant speed is greater than the distance travelled when the car is slowing down.

(4)

(Total for Question 5 = 10 marks)

6 Figure 7 shows the nuclei of four atoms.

234	235	238	238
U	U	Pu	Am
92	92	94	95
uranium-234	uranium-235	plutonium-238	americium-238

Figure 7

(a) Which two nuclei have the same number of neutrons?

(1)

- ☑ A plutonium-238 and uranium-235
- B uranium-235 and americium-238
- C uranium-234 and americium-238
- D americium-238 and plutonium-238
- (b) (i) State what is meant by the term 'half-life'.

(1)

(ii) Plutonium-238 is used in spacecraft to provide heat to power generators.

One of these generators contains 925 g of plutonium-238 when it is manufactured.

One gram of plutonium-238 has a power density of 0.54 W/g.

Plutonium-238 has a half-life of 87.7 years.

Calculate the average energy released per second by the generator after 263 years.

(4)

average energy released per second =(J)

(c) The nucleus of americium-238 can absorb an electron.

When this happens, one of the protons in the nucleus becomes a neutron, as shown in Figure 8.

$${}^{1}p + {}^{0}e \longrightarrow {}^{1}r$$

Figure 8

(i) Describe how absorbing an electron affects the proton number and the nucleon number of a nucleus.

(2)

(ii) Deduce which nucleus is formed when americium-238 absorbs an electron.

(1)

- A uranium-234
- **B** uranium-235
- C plutonium-238
- **D** americium-238

(Total for Question 6 = 9 marks)

7 A student investigates how the average speed of the trolley varies with starting height.
Figure 9 shows the trolley and runway.

Figure 9

(a) Describe how the student can determine the average speed of the trolley.	
	(4)

(b) Figure 10 shows his results.

starting height/m	v/ms ⁻¹
0.01	0.22
0.02	0.31
0.04	0.44
0.09	0.66
0.12	0.77
0.14	0.83
0.18	0.94

Figure 10

Figure 11 shows the student's graph.

Figure 11

(i)	The trolley has a mass of 650 g.	
	Calculate the average kinetic energy of the trolley which had a starting height of 0.075 m.	
		(2)
	average kinetic energy=	
(ii)	Determine the gradient of the graph when the height is 0.1 m.	
		(2)
	gradient =	
(iii)	Describe how the speed of the trolley varies with the changes in height made by the student between 0.04 m and 0.12 m.	
	by the student between 0.04 in and 0.12 in.	(2)

(c)	The student wants to change his experiment to investigate how different surfaces of the runway affect the speed of the trolley down the slope.	
	Devise an experiment that would allow him to investigate the effect of different surfaces on the average speed of the trolley.	
		(3)
	(Total for Ouestion 7 = 13 ma	arks)

8 (a) All objects emit electromagnetic radiation.

The intensity and wavelength of the emitted radiation vary with the temperature of the object.

Figure 12 shows this variation for a filament lamp at two different temperatures.

The visible region of the electromagnetic spectrum is also shown.

Figure 12

(i) Explain why a filament lamp appears brighter and less red as its temperature increases.		
	(4)	
	(- /	

(ii) The intensity of gamma radiation can be measured using a Geiger-Müller tube and counter.

The count rate recorded by the counter tube depends on how far away the Geiger-Müller tube is from the gamma radiation source.

The equation relating count rate to distance from the source is

count rate =
$$\frac{k}{d^2}$$

where *d* is the distance from the source and *k* is a constant.

A Geiger-Müller tube is placed 0.70 m from a source of gamma radiation. The counter displays a count rate of 85 000 count per minute.

Calculate the count rate recorded when the Geiger-Müller tube is placed 1.3 m away from the same gamma radiation source.

(3)

count rate =counts per minute

*(b) Sulfates and black soot are particles formed by industrial processes.		
Some of these particles are found in the atmosphere over the Arctic Ocean.		
The sulfates stay in the atmosphere and reflect (scatter) sunlight.		
The black soot falls onto the Arctic ice.		
Discuss how a reduction in these industrial processes is likely to affect the temperature of the atmosphere.		
	(6)	
(Total for Question 8 = 13	marks)	

9 (a) Explain what	: happens to the wavelength of li	ght when it passes from ai	r into glass. (2)
	ows a beam of red light approach		
The beam of	front. beam of light A B	air glass block	posite side.
Figure 13 Discuss the path of the wavefront AB as it enters and leaves the glass block. (6)			

(c) The distance between the Earth and the Sun is 1.50×10^{11} m.

Light takes 500 s to travel from the Sun to the Earth.

The wavelength of red light is 670 nm.

Calculate the frequency of red light, using only the data provided.

(4)

frequency =Hz

(Total for Question 9 = 12 marks)

) (i)	Uranium-235 is the isotope used in many nuclear reactors.	
	Explain how the fission of uranium-235 can lead to a chain reaction.	(4)
(ii)	Nuclei of beryllium-9 do not absorb neutrons.	
	Instead, nuclei of beryllium-9 absorb alpha particles and emit neutrons. Give a reason why a chain reaction can result from the emission of neutrons by uranium nuclei but not by beryllium nuclei.	(1)
b) Exp	plain what happen inside a nuclear reactor if neutron speeds are not controlled.	(3)

(c) Describe how the energy released in the chain reaction in a nuclear reactor is used to drive a turbine in a nuclear power station.		
	(3)	
	(Total for Question 10 = 11 marks)	

TOTAL FOR PAPER = 100 MARKS

Equations

(final velocity)² – (initial velocity)² = $2 \times \text{acceleration} \times \text{distance}$

$$v^2 - u^2 = 2 \times a \times x$$

force = change in momentum ÷ time

$$F = \frac{(mv - mu)}{t}$$

energy transferred = current \times potential difference \times time

$$E = I \times V \times t$$

force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density \times current \times length

$$F = B \times I \times I$$

 $\frac{\textit{voltage across primary coil}}{\textit{voltage across secondary coil}} = \frac{\textit{number of turns in primary coil}}{\textit{number of turns in secondary coil}}$

$$\frac{V_p}{V_s} = \frac{V_p}{N_s}$$

potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil

$$V_p \times I_p = V_s \times I_s$$

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta \theta$$

thermal energy for a change of state = mass \times specific latent heat

$$Q = m \times L$$

$$P_1 V_1 = P_2 V_2$$

to calculate pressure or volume for gases of fixed mass at constant temperature

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

$$E = \frac{1}{2} \times k \times x^2$$

pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength

$$P = h \times \rho \times g$$

BLANK PAGE